Chi Square Continuity Correction Fisher Digunakan
Uji Chi-square atau qai-kuadrat digunakan untuk melihat ketergantungan antara variabel bebas dan variabel tergantung berskala nominal atau ordinal. Prosedur uji chi-square menabulasi satu atau variabel ke dalam kategori-kategori dan menghitung angka statistik chi-square. Untuk satu variabel dikenal sebagai uji keselarasan atau goodness of fit test yang berfungsi untuk membandingkan frekuensi yang diamati (fo) dengan frekuensi yang diharapkan (fe). Jika terdiri dari 2 variabel dikenal sebagai uji independensi yang berfungsi untuk hubungan dua variabel. Seperti sifatnya, prosedur uji chi-square dilkelompokan kedalam statistik uji non-parametrik.
Semua variabel yang akan dianalisa harus bersifat numerik kategorikal atau nominal dan dapat juga berskala ordinal. Prosedur ini didasarkan pada asumsi bahwa uji nonparametrik tidak membutuhkan asumsi bentuk distribusi yang mendasarinya. Data diasumsikan berasal dari sampel acak. Frekuensi yang diharapkan (fe) untuk masing-masing kategori harus setidaknya :
Tidak boleh lebih dari dua puluh (20%) dari kategori mempunyai frekuensi yang diharapkan kurang dari 5. Jika hal diatas tersebut terjadi dan tabel silang 2x2 maka gunakan uji "Fisher Exact ".
Ada beberapa ketentuan yang berlaku pada uji chi-square antara lain:
- Jika tabel silang 2x2 dan tidak ada nilai expected (harapan) < 5, maka uji sebaiknya : Continuity Correction.
- Jika tabel silang 2x2 dan ada nilai expected (harapan) < 5, maka uji sebaiknya : Fisher Exact Test .
- Jika tabel silang lebih dari 2x2 misal 2x3, 3x3, 3x4, maka uji sebaiknya : Pearson Chi Square .
- Untuk uji Likelihood Ratio dan Linear by linear Association digunakan lebih spesifik, misal analisis pada bidang epidemiolog dan juga untuk mengetahui hubungan linier dua kategorik.
Formula uji Chi Square :
Rumus Chi-Square |
Dimana :
= Nilai khai-kuadrat
fo = frekuensi observasi/pengamatan
fe = frekuensi ekspetasi/harapan
Contoh kasus
Perusahaan penyalur alat elektronik AC ingin mengetahui apakah ada hubungan antara gender dengan sikap mereka terhadap kualitas produk AC. Untuk itu mereka meminta 25 responden mengisi identitas mereka dan sikap atau persepsi mereka terhadap produknya.
Permasalahan : Apakah ada hubungan antara gender dengan sikap terhadap kualitas AC?
Hipotesis :
- H0 = Tidak ada hubungan antara gender dengan sikap terhadap kualitas AC
- H1 = Ada hubungan antara gender dengan sikap terhadap kualitas AC
Tolak hipotesis nol (H0) apabila nilai signifikansi chi-square < 0.05 atau nilai chi-square hitung lebih besar (>) dari nilai chi-square tabel.
Data dari keduapuluh lima responden dapat dilihat pada tabel di bawah ini.
Data Sikap Responden |
Ket. : Gender : 1 = Laki-laki; 2 = Wanita, Sikap: 1 = berkualitas, 2 = Tidak berkualitas
Langkah-langkah Chi-Square dengan SPSS
- Analyze > Descriptive Statistics > Crosstab
- Masukkan variabel Gender ke dalam kotak Row
- MAsukkan variabel Sikap ke dalam kotak Column
- Klik untuk pilihan Statistics
- Pilih menu Chi-square, tekan Continue
- Pilih Cell, Observed, tekan Continue
- Klik Ascending, tekan Continue
- Tekan OK
Hasil output Chi-Square dengan SPSS
Case Processing Summary |
Pada tabel case processing summary diatas menunjukkan bahwa input data ada 25 responden dan tidak ada data yang tertinggal.
Gender*Sikap |
Pada tabel crossstabulasi antara gender*sikap di atas bahwa gender laki-laki berjumlah 12 responden. Dari 12 responden laki-laki bersikap/menganggap berkualitas sedangkan 5 responden bersikap tidak berkualitas. Sedangkan 13 responden bergender wanita yang menganggap produk AC berkualitas sebanyak 6 responden dan yang bersikap tidak berkualitas ada 7 responden.
Hasil Uji Chi-Square test |
Pada tabel menunjukan bahwa tidak ada (0%) cell expected kurang dari 5. Nilai Pearson chi-square test di atas dapat diketahui bahwa nilai signifikansi p-value sebesar 0.543 dan nilai chi-square sebesar 0.371. Karena tabel silang (cross tabulation) 2x2 dan 0% cell expected (< 5), maka menggunakan nilai continuity correction. Pada nilai continuity correction sebesar 0.043 dan signifikansi p-value 0.835 (>0.05) maka hipotesis null (H0) diterima yang berarti bahwa tidak ada hubungan yang signifikan antara gender dengan sikap terhadap kualitas AC.
Baca Juga :
Referensi :
Dunn,O.J and Clark,V.J. (2009). Basics Statistics A Primer for the Biomedical Sciences 4 Edition.New Jersey: A John Wiley & Sons
Field, A. (2009). Discovering Statistics Using SPSS 3rd. London : Sage Publication
Mehta,C.R and Patel,N.R. (1996). SPSS Exact tests. Chicago: SPSS Inc
Riyanto,A. (2010). Pengolahan Dan Analisis Data Kesehatan. Yogyakarta: Nuha Medika
Triola,M.F. (2012). Elementary Statistics 11th. London: Pearson Education Inc
Source: http://www.statistikolahdata.com/2013/04/analisis-chi-square.html
0 Response to "Chi Square Continuity Correction Fisher Digunakan"
Post a Comment